Exponential localization of singular vectors in spatiotemporal chaos.

نویسندگان

  • Diego Pazó
  • Juan M López
  • Miguel A Rodríguez
چکیده

In a dynamical system the singular vector (SV) indicates which perturbation will exhibit maximal growth after a time interval tau . We show that in systems with spatiotemporal chaos the SV exponentially localizes in space. Under a suitable transformation, the SV can be described in terms of the Kardar-Parisi-Zhang equation with periodic noise. A scaling argument allows us to deduce a universal power law tau(-gamma) for the localization of the SV. Moreover the same exponent gamma characterizes the finite- tau deviation of the Lyapunov exponent in excellent agreement with simulations. Our results may help improve existing forecasting techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error growth patterns in systems with spatial chaos: from coupled map lattices to global weather models.

Error growth in spatiotemporal chaotic systems is investigated by analyzing the interplay between temporal and spatial dynamics. The spatial correlation and localization of relative fluctuations grow and decay indicating two different regimes, before and after saturation by nonlinear effects. This general behavior is shown to hold both in simple coupled map lattices and in global weather models...

متن کامل

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

گسترش روش بدون شبکه توابع پایه نمایی برای حل مسائل تکین ورق

: Existence of singular points inside the solution domain or on its boundary deteriorates the accuracy and convergence rate of numerical methods. This phenomenon usually happens due to discontinuities in the boundary conditions or abrupt changes in the domain shape. This study has focused on the solution of singular plate problems using the exponential basis functions method. In this method, un...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009